
nally more complex than the usual uni-direction adiabatic/isothermal 
at plate 
ows: it is

necessary to start with the exact equations distinguishing between Favre and Reynolds de-

composed variables and recognizing that their respective Taylor series expansions are related

by vj = uj+ < vj >.

It is typical of current compressible k�" and Reynolds stress models to neglect some or all

of these contributions to the mean momentum, mean energy and Reynolds stress equations.

The retention of the mass 
ux terms will be important in complex compressible turbulent


ows: these include 
ows in which there are mean density gradients due to large Mach

number or combustion, separation or reattachment (in
ection points), cold wall boundary

conditions, mean dilatation, shocks, adverse pressure gradients, or strong streamwise accel-

erations.
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Reynolds stress equations can be written in the following form

D=Dt (< � > fvivjg) = � < � > fvivpgVj ;p� < � > fvjvpgVi;p+
Q

ij +2=3 < pd > �ij
�[< pvi > �pj+ < pvj > �ip+ < � > fvivjvpg];p
+ 2[< � >< vjvi >;p� < � >< vid > �jp=3� < � >< vjd > �ip=3];p
�2=3"t�ij � [< vj >< �ip > + < vi >< �jp >];p
+ < vj > [�P;i+ �ip;p+ < �ip >;p ]+ < vi > [�P;j + �jp;p+ < �jp >;p ]

� < � > "dij � 2=3 < � > ("s + "d)�ij

where the de�nition of the stress tensor �ij has been used to expand [< vj�ip > + < vi�jp >]

in the viscous transport terms and d = vp;p. Except for neglecting correlations between the


uctuating Favre velocity and its vorticity the �nal form of the Reynolds stress equations,

given above, is exact.

Conclusions

The mass 
uxes or Favre 
uctuation means appears in several places in the compressible

turbulence equations. They contribute to 1) the viscous terms in the mean momentum

equation, and in the mean energy equation they contribute to 2) the viscous terms, 3) the

pressure work terms, 4) the viscous work terms, and the 5) pressure 
ux which is coupled to

the mass 
ux through the equation of state. Modeling Ui ' Vi is equivalent to neglecting the

mass 
ux in �ve di�erent locations in the mean equations. In the Reynolds stress equations

the mass 
ux contributes to 6) the viscous di�usion of the Reynolds stresses, which only

recognized when the viscous terms are properly distinguished into their Reynolds and Favre

variable components. The mass 
ux determine the importance of two production mechanisms

7) one due the acceleration of the mean 
ow and 8) the other due to viscous e�ects associated

with the Favre 
uctuation mean and also it contributes to 9) the pressure 
ux. A general

algebraic model for the < vi >, derived from �rst principles, and suitable for complex 
ows

of engineering interest has been derived in Ristorcelli (1993) and tested in Ristorcelli and

Dinavahi (1993).

The viscous terms in the Favre-averaged Reynolds stress equations have been system-

atically derived, identi�ed and segregated. The source of terms associated with anisotropy

and inhomogeneity of the dissipation, essential to consistent near-wall modeling, have been

shown. The second essential point is that the dissipation is a function of ui 
uctuations

about the Reynolds mean, while the Reynolds stress equation is an evolution equation for

statistics of vi 
uctuations around the Favre mean. The near-wall Taylor series expansions

of these two quantities, in a general compressible 
ow, are di�erent. Near-wall asymptotics

must recognize these facts when relating Favre type variables fvivjg, in which the prob-

lem is posed, to dissipation type quantities which are carried in Reynolds variables. This

point is crucial for any consistent general near-wall model development in 
ows only nomi-
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terms arising from viscous surface terms appear naturally in ui variables while the problem

is posed in the Favre vi variables.

The dissipation type terms, which require closure, are kept in ui variables. The fact

that vi = ui + < vi > is used to segregate the terms into ones that require modeling

and ones that are carried as dependent variables in the closure scheme. The identities

< ui;p up;i>=< uiup >;ip�2 < ui;i up >;p+ < ui;i up;p> and ui;p= up;i� �ijp!j where the

vorticity is !i = �ijkuj;k are used to write the trace of the dissipation terms as

< uj;p �
u
jp >=< � > [< !k!k > +2(< ujup >;jp�2 < uk;k up >;p ) + 4=3 < uk;k up;p>]:

Here < !j!j >=< uj;p uj;p> � < uj;p up;j >=< uj;p uj;p> � < uqup >;qp+2 < uq;q up >

;p� < uq;q up;p>. In a homogeneous compressible turbulence < !j!j >=< uj;p uj;p> � <

uj;j up;p> which reduces to the usual expression in an incompressible homogeneous turbu-

lence. De�ning the positive de�nite scalar dissipation quantities, the solenoidal dissipation

< � > "s =< � >< !j!j > and the dilatational dissipation < � > "d = 4=3 < � ><

up;p uq;q > the trace can then be written as

< uj;p �
u
jp >= < � > ("s + "d) + "t

where "t = 2 < � > [< ujup >;j �2 < uk;k up >];p is a scalar transport term that comes from

the dissipation type terms. The decrease of the Favre kinetic energy, for a homogeneous

turbulence is then written as D=Dt (< � > fvjvjg) = �2 < uj;p �
u
jp >= �2 < � >

("s+"d)�2"t where "t = 0 Note that "t is not de�ned as per unit mass quantity to emphasize

that an equation need not be carried for it: the substitution ui = vi � < vi > shows that

it can be written, except for the correlation with the divergence, in terms of the mass 
ux

and the Reynolds stresses for which equations are carried. In general "t is either positive

or negative: in a homogeneous turbulence "t is zero while in the near-wall region it makes

a nonnegligible contribution to the energy budget. The point is that in an inhomogeneous

turbulence it is necessary to recognize the contributions to < uj;p �
u
jp > that are functions of

gradients of the Reynolds stresses rather than hiding these terms in the dissipation. If the

trace is added and subtracted the dissipation-type terms can be rewritten as

� < uj;p �
u
ip > � < ui;p �

u
jp >= � < � > "dij � 2=3 < � > ("s + "d)�ij � 2=3"t�ij

where the term < � > "dij has zero trace. The viscous terms are now manipulated into their

�nal form. Using �u
ij = �ij � < �ij >, which follows from ui = vi � < vi >, allows the

viscous transport terms to be rewritten as < vi�
u
jp >=< vi�jp > � < vi >< �jp >. The

4



and where there are gradients in the mean density, the < vi > are important and need

to be carried. Data from Ma = 4:5 DNS computations of Dinavahi and Pruett (1993) in

unidirectional developing wall bounded 
ow indicate that the approximation of Ui ' Vi in

the wall bounded 
ow is inadequate. This is a nominally simple 
ow, in comparison to

those of practical interest, in which there is a four-fold variation of the mean density over

the boundary layer. In data taken from that simulation, shown in Figure 1, it was quite

unexpectedly found that < v2 > is larger than either U2 and V2. It is large enough to cause

U2 and V2 to have di�erent signs. This indicates that the mean 
uid particle transfer is

in a direction opposite to the net momentum transfer in 
ows with mean density gradients.

Moreover, the contribution of the Favre 
uctuation mean to the total viscous stress was found

to be as large as one third the contribution of the Favre mean viscous stress, in the near

wall portions of the turbulent boundary layer. In 
ows with separation and re-attachment

the second derivative of the mean 
ow vanishes leaving, in the viscous terms, the second

derivative of the Favre 
uctuation mean. Clearly this will be an important term when there

is a turbulent mass 
ux due to mean density gradients near the point of separation.

The mean energy equation is subject to similar de�ciencies. The exact equation for the

mean total energy, internal plus kinetic, is

(< � > E);t + (< � > VpE);p= � [PVp + P < vp > + < pvp >];p+ [< �pkvk > � < � > fevpg];p
+ [�pkVk+ < �pk > Vk + �pk < vk >];p�Qp;p :

It is not unusual in compressible turbulence models to see several, if not all, of the terms

involving the mass 
ux, P < vk >, < �pk > Vk, or �pk < vk > dropped because the present

models for these terms destabilize computations or because they are, in the spirit of Ui ' Vi,

assumed negligible.

The Reynolds stress equations

The second moment equations for a compressible 
ow, are written without approxima-

tion, and after some manipulation, as

D=Dt (< � > fvivjg) = � < � > fvivpgVj ;p� < � > fvjvpgVi;p+
Q

ij +2=3 < pvk;k > �ij
�[< pvi > �pj+ < pvj > �ip+ < � > fvivjvpg� < vj�

u
ip > � < vi�

u
jp >];p

+ < vj > [�P;i+ �ik;k + < �ik >;k ]+ < vi > [�P;j + �jk;k + < �jk >;k ]

� < uj;p �
u
ip > � < ui;p �

u
jp >

where the meanmomentumequations have been used and �u
ij =< � > [ui;j +uj;i�2=3uq;q �ij].

The form of the equations above re
ect the following manipulations: 1) The deviatoric part

of the pressure-strain correlation is de�ned
Q

ij =< p(vi;j +vj;i ) > �2=3 < pvk;k > �ij. and

2) the identity vi = ui + < vi > has been used to rewrite the transport terms in vi variables

while keeping the dissipation terms in ui variables. In the Reynolds stress equations the
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which follows from the de�nition of the Favre-average of the Favre 
uctuation, fvig =<

��vi >< � >�1= 0. Thus, apart from a scaling by the local mean density, the mean of the


uctuating Favre velocity and the mass 
ux are equivalent quantities. The primes on the


uctuating density have been dropped.

Mathematically< vi > represents the di�erence between unweighted and density- weighted

averages of the velocity �eld and is therefore a measure of the e�ects of compressibility

through variations in density. It plays an important role in parameterizing the anisotropic

e�ects of compressibility associated with the mean dilatation and the mean density gradi-

ents. Experimentally it is an important and essential quantity that allows numerical results

computed in Favre averaged variables to be related to experimental results computed in

Reynolds variables. Additional results as well as an equation for the mass 
ux have been

given in Ristorcelli (1993). The present investigation focuses on the role the Favre 
uctuation

mean plays in the the mean momentum, mean energy and the Reynolds stress equations and

shows that the current practice of neglecting it is unnecessary, inconsistent and inadequate.

The mean 
ow equations

Substituting in the Favre decomposition into the Navier-Stokes equations and time av-

eraging produces, without approximation,

(< � > Vi);t + (< � > VpVi);p= �P;i+�ij;j (U)� (< � > fvivpg);p

where �ij(U) =< � > [Ui;j +Uj ;i�2=3Uq ;q �ij]: Correlations between the 
uctuating viscos-

ity and the 
uctuating velocity have been neglected. Note that the viscous terms are given

in terms of the time-averaged mean velocity while the problem is solved in terms of the

Favre-averaged mean velocity. They are related by Ui = Vi + < vi >. The usual assump-

tion used to close the viscous term is that Ui ' Vi. Thus even the �rst-order equation is

modeled reducing the accuracy of the method at the very lowest order in the very region of

the most practical (aerodynamic) interest. Part of the appeal of k � " or Reynolds stress

turbulence models in the incompressible turbulence is that the equations for the mean 
ow

are carried exactly: this can also be done for the compressible turbulence. Substituting

Ui = Vi + < vi > produces the exact equation for the mean momentum equation:

(< � > Vi);t + (< � > VpVi);p= �P;i+ [�ij+ < �ij >];j �(< � > fvivpg);p

where �ij =< � > [Vi;j +Vj ;i�2=3Vq;q �ij], and < �ij >=< � > [< vi >;j + < vj >;i�2=3 <

vq >;q �ij]. The mean momentum equation is now carried exactly. Note that the additional

terms, < �ij >, do not contribute to the mean 
ow equations if the turbulence is either

homogeneous or isotropic. In the near-wall region where the viscous terms are important
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Introduction

The stress and work terms in the mean momentum, mean energy and the Reynolds

stress equations are usually modeled by assuming that the Favre mean velocity is a suitable

approximation to the Reynolds mean velocity. This neglects the contribution of the mean

of the 
uctuating Favre velocity which, related to the turbulent mass 
ux, quanti�es the

di�erence between the Reynolds and Favre mean velocities of the mean 
ow. As the stress

and work terms do not introduce any new unknown quantities in k � " or Reynolds stress

models (an eddy viscosity expression for the mass 
ux is typically carried) and because

they can be carried exactly with little additional complexity there is no need or justi�cation

for any modeling assumptions. The present article derives the exact equations for the mean


ow and the Reynolds stresses for a compressible turbulence keeping the neglected di�erence

between the Reynolds and the Favre mean velocities. In so doing it is hoped to make two

crucial points clear: 1) that the retention of the mass 
ux terms in the several places it

appears in the mean momentum, mean energy and Reynolds stress equations is essential to

the prediction of any nominally complex engineering 
ows and 2) that a careful distinction

between Reynolds-averaged and Favre-averaged variables must be made to properly pose the

near-wall problem and insure that the near-wall asymptotics are carried out consistently.

In this exposition upper case letters will be used to denote mean quantities except in the

case of the mean density, < � >, as � has no convenient upper case form. The expectations

will be indicated using the angle brackets for time-means, eg. < vivj >, and the curly brackets

for the density-weighted or Favre-means, eg. fvivjg, where fvivjg =< ��vivj >< � >�1 and

the asterisk denotes the full �eld, �� =< � > +�0. The dependent variables are decomposed

according to
u�i = Ui + ui where < ui >= 0

u�i = Vi + vi where fvig = 0

�� = < � > + �0 where < �0 >= 0

p� = P + p where < p >= 0:

As both the Reynolds-mean and the Favre-mean velocities appear in the evolution equations

for a compressible turbulence it is necessary to carry both the Favre and the Reynolds

decompositions of the velocity �eld. The mean of the 
uctuating Favre velocity, < vi >,

characterizes the di�erence between the Favre mean velocity and Reynolds mean velocities,

Vi and Ui, as well as the di�erence between the instantaneous 
uctuating velocities:

Ui = Vi + < vi >

ui = vi � < vi > :

The Favre 
uctuation mean, a �rst-order moment, is related to the turbulent mass 
ux, a

second order moment, by

< �vi >= � < � >< vi >

1



CARRYING THE MASS FLUX TERMS EXACTLY

IN THE FIRST AND SECOND MOMENT EQUATIONS

OF COMPRESSIBLE TURBULENCE
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ABSTRACT

In compressible turbulence models it is assumed that the Favre-mean velocities are suit-

able approximations to the Reynolds-mean velocities in order to close unknown terms. This

neglects, in the mean momentum and energy equations, the contribution to the stress and

work terms by the mean of the 
uctuating Favre velocity, a quantity proportional to the

turbulent mass 
ux. As the stress and work terms do not introduce any new unknown cor-

relations requiring closure in either k � " or Reynolds stress closures and because the exact

form of the terms can, with little additional work, be carried there is no need to make any

modeling assumptions. In the Reynolds stress equations the viscous terms appear naturally

in Reynolds variables while the problem is posed in Favre variables. In the process of split-

ting the viscous terms into the viscous transport terms, carried in Favre variables, and the

dissipation terms, carried in Reynolds variables, important contributions from the mass 
ux

appear. The accurate accounting of these terms is important for any consistent near wall

modeling and the retention of the mass 
ux terms is important in complex compressible

turbulent 
ows.
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